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Abstract. Asymptotic critical exponents and amplitudes as well as the leading ‘correction-
to-scaling’ (CTS) amplitudes have been accurately determined through an elaborate analysis of
magnetization data taken on amorphous Fe90−xCoxZr10(06 x 6 6) and Fe90+yZr10−y(y = 0, 1)
alloys in the critical region. Consistent with the Harris criterion, asymptotic critical exponents
and the universal amplitude ratioDmδ0/h0 do not depend on composition and possess values
the same as those predicted by theory for an ordered spin system withn = d = 3. The
leading amplitude ratioa−M1/a

+
χ1, which ischaracteristicof ferromagnets with quenched random

disorder and for which no theoretical estimate is presently available, iscomposition independent
and probably universal. The fraction of spins actually participating in the ferromagnetic (FM)–
paramagnetic (PM) transition occurring atT = TC is small and increases with Co substitution.
While the magnetic equation of state (MES) in linear scaling variables and its counterpart
in nonlinear scaling variables, valid for a second-order phase transition, formequivalent
descriptions of magnetization,M(T,H), data in the asymptotic critical region (ACR), the latter
version of MES alone reproduces closely the observedM(T,H) behaviour in a temperature
range as wide as 0.45TC . T . 1.5TC . Nonanalytic CTS terms dominate over analytic ones
in the ACR but the reverse is true for temperatures outside the ACR. Initial susceptibility
follows the generalized Curie–Weiss law fromTC to ' 1.5TC and thereby permits an accurate
determination of atomic moment in the PM state. The results of the present investigation provide
strong experimental evidence for weak itinerant ferromagnetism in the glassy alloys in question.

1. Introduction

Static critical behaviour near the ferromagnetic–paramagnetic (FM–PM) phase transition of
amorphous (a-) Fe90+yZr10−y(0 6 y 6 2) alloys has been investigated using the various
experimental techniques such as bulk magnetization (BM) [1–5], ac susceptibility (ACS)
[6, 7], ferromagnetic resonance (FMR) [8, 9], electrical resistivity(ρ) [10, 11] and small-
angle neutron scattering (SANS) [12] during the past decade and yet the nature of the
FM–PM transition atTC (the Curie point) and the type of magnetic ordering forT < TC
has eluded a complete understanding so far. Early BM andρ(T ) data [2, 3, 10] taken
on a-Fe90−x(Ni,Co)xZr10 and a-Fe90+yZr10−y alloys over a wide range of temperatures
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aroundTC yielded values for the critical exponentsα, β and γ for zero-field specific
heat, spontaneous magnetization,MS(T ) ≡ M(T,H = 0), and initial susceptibility,χ0(T ),
that are in complete disagreement with the predictions of the renormalization group (RG)
calculations [13–18], as explained below. In conformity with the heuristic arguments due
to Harris [19] (the famous Harris criterion), the RG theories [13–18], based on the random-
exchange (RE) model (which combines within itself both quenched random site- and bond-
diluted spin models), predict that the critical behaviour of quenched random spin systems
with space dimensionalityd depends on thesign of the specific heat critical exponentαp
of the pure (ordered) system. Ifαp < 0 (i.e., ford = 3 Heisenberg andd = 3 XY systems
with spin dimensionalityn = 3 andn = 2, respectively), quenched randomness acts as an
irrelevant scaling field and hence leaves the sharpness of the transition as well as the values
of the static critical exponents of the pure systemunaltered. If αp > 0 (i.e., for ad = 3 Ising
system withn = 1), acrossoverfrom pure torandomfixed point (which is characterized by
critical exponents whose values are widely different from the pure ones, so much so that the
exponentα changes sign, i.e.,αr < 0) occurs. Going by past experience that the asymptotic
critical behaviour of several 3D transition metal–metalloid amorphous alloys is adequately
described [20–23] by the random exchange Heisenberg model (REHM), the alloys in
question are also expected to follow the same trend. Contrary to this expectation, the values
of the exponentsβ andγ (α) for the glassy alloys Fe90−x(Ni,Co)xZr10 and Fe90+yZr10−y ,
deduced [2, 3, 10] from early BM(ρ(T )) data, are roughly 1.4 (10)times larger than the
RG estimates [18] for an isotropic nearest-neighbour (NN)d = 3 Heisenberg ferromagnet.
Such unphysically large exponent values were taken to reflect a large fluctuation in the
exchange interaction. This inference combined with the SANS result [12] that the spin–
spin correlation length does not diverge atTC led some workers [12, 24] to conclude that
the long-range ferromagnetic ordering of the conventional type does not develop in these
alloys at any temperature. However, it was later demonstrated that these anomalously large
exponent values result from a major flaw in the previous data analysis and that early BM
data [2], when analysed properly [4], yield values for the exponentsβ andγ that are fairly
close to those theoretically predicted for ad = n = 3 spin system. The results of this
reanalysis were subsequently confirmed by other investigations [5–9] involving BM, ACS
and FMR measurements on glassy alloys with the same or similar nominal composition.
Though these refinements narrow down the spread in the exponent values from about 40
to 10%, the theoretical estimates [13, 14, 16, 18] for the critical exponents that characterize
d = 3 quenched random-exchange Heisenberg(n = 3) and Ising(n = 1) fixed points fall
well within this 10% range [8]. Therefore, even the most refined results reported until now
remain inconclusive so far as the exact nature of the FM–PM transition is concerned. The
situation is further complicated by the observation, based on the recent ac susceptibility data
[7], that the effective Kouvel–Fisher [25] susceptibility exponentγ ∗(T ) attains the isotropic
d = 3 Heisenberg value nearε = (T −TC)/TC ≈ 10−2 but, asTC is approached closer than
ε = 10−2, γ ∗(T ) falls to as low a value as 1.1 atε ≈ 5× 10−3. Such a steep fall in the
value of γ ∗(T ) has been attributed [7] to the effect of anisotropy, which, most probably,
has its origin in spin–orbit coupling.

A close scrutiny of the results published so far reveals that most of the measurements
have been performed in a temperature range which either completely or partly lies outside
the asymptotic critical region(ACR = |ε| . 10−2). The values for the critical exponents
obtained in this temperature range are, therefore, not the true asymptotic values which the
theory predicts. Even in those cases whereTC was approached closer thanε = 10−2, data
have been fitted to asingle power lawover a wide range of temperatures in the vicinity
of TC and such a data analysis invariably yields aneffectivecritical exponent whose value
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depends on the temperature range chosen for the fit. Thus, no definite conclusions regarding
the nature of the leading singularity atTC can be drawn from a quantitative comparison
between the values ofeffectivecritical exponents reported in the literature and those of the
asymptoticcritical exponents yielded by the theory. Alternatively, the universality class to
which a-Fe90−xCoxZr10 and a-Fe90+yZr10−y alloys belong can be unambiguously established
only when the true asymptotic values of the critical exponents are determined experimentally
and the values so obtained compared with the theoretical predictions. With this aim in mind,
values of asymptotic (leading correction-to-scaling (CTS)), critical exponentsβ andγ and
critical amplitudes (amplitudes) have been accurately determined from high-precision BM
measurements made on a-Fe90−xCoxZr10(0 6 x 6 6) and a-Fe90+yZr10−y(y = 0, 1) alloys
in the asymptotic critical region through an elaborate data analysis. Results of various
methods of analysis have been compared so as to clearly distinguish between effective
and asymptotic critical exponents and amplitudes. Moreover, this comparison helps in
identifying the main source of the spread in the previously reported exponent values.
Another important aspect of the present work is the result that magnetization satisfies the
generalized magnetic equation of state in nonlinear scaling variables over a temperature
range as wide as 0.4TC . T . 1.5TC .

2. Experimental details

Amorphous (a-) Fe90−xCoxZr10(x = 0, 1, 2, 4, 6) and Fe90+yZr10−y(y = 0, 1) alloys
were prepared under inert (high-purity argon) atmosphere by single-roller melt-quenching
technique in the form of long ribbons of∼ 1–2 mm width and 30–40µm thickness.
The amorphous nature of the ribbons so prepared was verified by the x-ray diffraction
method using Mo Kα radiation and later confirmed by high-resolution electron microscopic
examination. A detailed compositional analysis [20] revealed no deviation from the nominal
composition within the resolution limit of 0.01 at.% (Fe or Co) over the length (' 20 cm)
of the alloy ribbons. In view of the observed composition dependence ofTC , the fact that
concentration fluctuations, if present, do not exceed 0.01 at.% places anupper boundon
the spread inTC asδTC = 0.1 K. For this reason, the data taken in the reduced temperature
range6 δTC/TC have been left out of the consideration while analysing the data. Several
strips of alloy ribbon, all of 3 mm length and 1–2 mm width, were stacked one above the
other after a thin layer of Apeizon N grease had been applied in between them to ensure a
good thermal contact between the ribbon strips. The sample in the form of a stacked bundle
was placed in the sample holder assembly and rotated such that the external magnetic field
(Hext ) lies within the ribbon plane and is directed along the length of the ribbons. This
arrangement minimizes the demagnetizing effects. Sample temperature was monitored by
a pre-calibrated platinum sensor which is in body contact (and hence in very good thermal
contact) with the sample. The demagnetizing factorN (typically,N ' 0.03) was computed
from the slope of theM (magnetization) versusHext straight-line (i.e., 4πN = (slope)−1)
isotherm taken at a temperature (T = 77 K) well below the Curie temperature(TC) in the
field range−20 Oe6 Hext 6 20 Oe. TC was determined to an accuracy of±1 K by
identifying TC with the temperature at which akink occurs in the thermomagnetic curve
taken atHext = 10 Oe (i.e., by the so-called kink-point method [26]).

M versusHext isotherms in fields up to 15 kOe for the above-mentioned alloys were
taken at' 0.1 K (1.0 K) intervals in (outside) the critical region, i.e., in the temperature
range' TC ± 15 K. The temperature interval at which the isotherms were recorded was
gradually increased to 5 K for temperatures well aboveTC . Each isotherm was obtained by
measuringM at 55 predetermined but fixed field values (each stable to within±1 Oe) in the
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range 06 Hext 6 15 kOe. The temperature was held constant to within±25 mK (±40 mK)
for T 6 300 K (T > 300 K) by means of a proportional, integral and derivative temperature
controller. Magnetization measurements were extended to temperatures beyond 300 K only
for the alloys withx = 4 and 6 since their Curie temperatures lie above 300 K. Now thatTC
for the alloy withx = 6 has a value (' 375 K) that does not lie far below the crystallization
temperature (' 700 K): before proceeding with the above type of measurement, the sample
of this composition was annealed at 450 K for different durations of time till no shift inTC
was observed in the ‘kink-point’ measurement. This procedure ensured that the specious
effects due to structural relaxation did not contaminate the magnetization data recorded in
the critical region.

3. Analysis and results

Magnetic order–disorder phase transition at the Curie point(TC) is characterized by the
asymptoticcritical exponentsβ, γ and δ as well as by the asymptotic critical amplitudes
m0, (m0/h0) andA0 or D, defined as

M(T, 0) = m0(−ε)β ε < 0 (1)

χ0(T ) =
{
(m′0/h

′
0)ε
−γ ′ ε < 0

(m0/h0)ε
−γ ε > 0

(2)

and

M(TC,H) = A0H
1/δ or H = DMδ ε = 0. (3)

In (3) (and in the following text),H = Hext − 4πNM denotes the field that the spins
constituting the ferromagnetic system actually experience andD = A−δ0 . Strictly speaking,
such a power law behaviour ((1) and (2)) is valid only for temperatures extremely close to
TC , i.e., in the limit |ε| → 0. However, in practice, single-power-law fits are frequently
attempted on data taken at temperatures not very close toTC . In this section, we will
demonstrate that such fits invariably yieldeffectivecritical exponents and amplitudes whose
values depend on the temperature range chosen for the fit.

With a view to tracing the origin of the spread in the reported exponent values,
numerical estimates for the critical exponents and amplitudes have been deduced from
the magnetization data taken in the critical region on a-Fe90−xCoxZr10(x = 0, 1, 2, 4, 6) and
a-Fe90+yZr10−y(y = 0, 1) alloys using different methods [26] of analysis. These methods
fall into two main categories [26]: the scaling equation of state analysis and asymptotic
analysis.

3.1. Scaling equation of state analysis

This type of analysis assumes the validity of scaling and makes use of a specific form of
scaling equation of state (SES) to simultaneously determine the exponentsβ andγ (or β
andδ) from the ‘in-field’ magnetization data. In order to ascertain whether or not the results
depend on the choice of scaling equation of state, three different forms of SES have been
used to analyse theM(T,H) data.

3.1.1. SES I. In this method, use is made of the SES form [26]

m = f±(h) (4)
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Table 1. Values of the critical exponents and amplitudes obtained from the SES analyses of the BM data. Numbers in the parentheses denote the uncertainty in the least
significant figure and the values ofµ0 are obtained from the values ofM(0, 0).

Conc. TC m
eff

0 h
eff

0 µ0 µeff c

(y/x) Method (K) βeff γeff (G) h
eff

0 /m
eff

0 (105 G) (µB) µ0h
eff

0 /kBTC (µB) (%)

y = 1 SES II 209.6(1) 0.360(15) 1.380(25) 750(35) 155(50) 1.2(4) 1.34(2) 0.051(20) 44(17) 3(1)
SES III 209.6(1) 0.360(15) 1.386(20) 835(40) 170(20) 1.4(2) 1.34(2) 0.059(10) 36(8) 4(1)

y = x = 0 SES II 225.0(1) 0.350(15) 1.386(30) 800(30) 175(50) 1.4(4) 1.44(2) 0.060(20) 38(14) 4(1)
SES III 225.0(1) 0.355(15) 1.386(20) 860(50) 215(25) 1.9(3) 1.44(2) 0.081(14) 28(6) 5(1)

x = 1 SES II 256.7(1) 0.365(30) 1.380(30) 840(30) 200(75) 1.7(9) 1.52(2) 0.068(20) 35(11) 5(1)
SES III 256.7(1) 0.365(15) 1.380(15) 860(40) 350(30) 3.0(4) 1.52(2) 0.120(18) 20(4) 8(1)

x = 2 SES II 281.6(1) 0.360(10) 1.386(25) 800(30) 250(50) 2.0(5) 1.62(2) 0.077(22) 33(8) 5(1)
SES III 281.6(1) 0.360(15) 1.386(20) 850(40) 455(50) 3.9(7) 1.62(2) 0.150(28) 17(5) 10(1)

x = 4 SES II 328.0(1) 0.355(15) 1.390(25) 900(30) 350(48) 3.2(5) 1.79(2) 0.117(22) 25(4) 7(1)
SES III 327.9(1) 0.358(15) 1.390(20) 955(60) 580(55) 5.5(8) 1.79(2) 0.202(30) 14(3) 13(1)

x = 6 SES II 374.8(1) 0.355(10) 1.386(25) 950(30) 500(50) 4.8(6) 1.81(2) 0.156(22) 19(3) 10(1)
SES III 374.7(1) 0.360(15) 1.386(15) 935(60) 655(75) 6.1(9) 1.81(2) 0.198(30) 14(3) 13(1)
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Figure 1. A ln(m ≡ M/|ε|β) versus ln(h ≡ H/|ε|β+γ ) scaling plot, based on SES I, for
a-Fe90+yZr10−y alloys. Note that the ordinate scales on the left- and right-hand sides pertain to
the scaling plots for the alloys withy = 0 and 1, respectively. In these plots, the upper (lower)
curve represents theuniversal curve f−(h) (f+(h)) onto which theM–H isotherms taken at
temperaturesε < 0 (ε > 0) collapse (see text). The inequality, e.g.,−0.03. ε . 0.03 for the
alloy with y = 0, specifies the temperature range aroundTC covered by the universal curves for
a given composition.

wheref+(h) and f−(h) are the scaling functions [26] for temperatures above and below
TC , whilem ≡ M/|ε|β andh ≡ H/|ε|β+γ are the scaled magnetization and the scaled field,
respectively. In accordance with (4), theM–H isotherms in the critical region are made to
fall onto two universal curves, (f− for ε < 0 andf+ for ε > 0) through a proper choice
[4, 5, 8, 9, 21–23, 26] of the parametersTC , β and γ . A representative lnm–lnh plot that
illustrates such a scaling behaviour of the magnetization is shown in figure 1. However,
this choice is by no means unique in the sense that nearly the same quality of data collapse,
onto two universal curves can be achieved for a wide range of parameter values (typically,
±2% for TC and±10% for β and γ ), particularly when the data outside the asymptotic
critical region are also included in the analysis. This problem can be tackled to some extent
by employing the range-of-fit SES analysis [27] in which more and more of the data taken
at temperatures away fromTC are excluded from them–h plot so that the exponentsβ and
γ become increasingly sensitive to the choice ofTC and the data exhibit strong departures
from the curvesf−(h) andf+(h) if the choice of the parameters differs from the correct
one. Were it not for the insensitive nature of the log–log scale, this procedure would go
on refining the values of the critical exponents until they approached the asymptotic values.
Thus, one obtains only the effective critical exponents by this method and their values
depend on the temperature range over which this analysis is attempted.

3.1.2. SES II. We now use an alternative form of scaling equation of state given by

m2 = ∓a± + b±(h/m) (5)
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(where the plus and minus signs have the same meaning as stated above and the constantsa±
andb± are related to the critical amplitudes asm0 = √a− andh0/m0 = a+/b+) to determine
the exponentsβ andγ . In this case too, theM–H isotherms in the critical region are made
to fall onto two universal curves, one belowTC and the other aboveTC , in anm2–h/m plot,
through a proper choice of the parametersTC , β andγ . This form of SES has the distinction
of providing more accurate estimates forTC , β andγ when the range-of-fit analysis is used
since even the slight deviations of the data from the universal curves, which do not show up
clearly in a lnm–lnh plot because of the insensitive nature of the double-logarithmic scale,
become easily discernible in them2–h/m plot. Another advantage of SES II (5) is that it
allows estimation of the critical amplitudes (m0 andh0/m0) from the intercepts made by the
universal curves on them2 andh/m axes.m2–h/m plots for different compositions in the
two alloy series in a narrow temperature range−0.008. ε . 0.008 aroundTC are shown
in figure 2 while the average values ofTC , β, γ , m0 andh0/m0 obtained in this temperature
range are listed in table 1. The critical exponents and amplitudes even in such a narrow
temperature range do not attain their asymptotic values but instead possess effective values,
which vary within the limits specified in table 1 when the temperature range is progressively
narrowed down further in the range-of-fit analysis.

3.1.3. SES III. This method is based on the Arrott–Noakes equation of state [28], i.e.,

(H/M)1/γ = a′ε + b′M1/β . (6)

In (6), the temperature-independent coefficientsa′ andb′ are related to the critical amplitudes
m0, m0/h0 andD, appearing in (1)–(3), as

m0 = (a′/b′)β (m0/h0) = (a′)−γ D = (b′)γ . (7)

In this method, theM–H isotherms taken at different temperatures in the critical region are
used to construct theM1/β–(H/M)1/γ plot, the so-called modified Arrott plot (MAP), and
the values of critical exponentsβ and γ are varied so as to make these isotherms linear
over as wide a range ofH/M values as possible and parallel to one another in a narrow
temperature range aroundTC (with the critical isotherm atTC passing through the origin).
The critical exponents obtained in this way are still effective exponents. However, the
values for critical exponents and amplitudes very close to the asymptotic ones are obtained
if during the course of this analysis, the temperature range aroundTC is narrowed down to
such an extent thatTC is approached closer than|ε| ' 10−3. Values of the exponents and
amplitudes (calculated atε ' 0.01) obtained from the modified Arrott plots (MAPs) thus
constructed for a-Fe90−xCoxZr10 (x = 0, 1, 2, 4 and 6) and a-Fe90+yZr10−y(y = 0, 1) alloys
are listed in table 1 and a representative MAP is shown in figure 3. In this figure, only
the isotherms at a few selected temperatures in the critical region are included for the sake
of clarity. TheM(T,H) data are observed to significantly deviate from the linear MAP
isotherms at low fields for temperatures away fromTC and such deviations become more
pronounced as|T − TC | increases. The origin of such deviations is not clear at present.
Unlike the previous two methods of analysis, the SES III data analysis yields more accurate
values forTC , β andγ because onlytwo (as againstthree in the SES I and II analyses) free
parameters are involved and permits accurate determination of the ‘zero-field’ quantities
such as spontaneous magnetization,M(T, 0), and initial susceptibility,χ0(T ), from the
intercepts [M(T, 0)]1/β and [χ−1

0 (T )]1/γ that MAP isotherms make on the ordinate for
T . TC and on the abscissa forT & TC , respectively, when their high-field linear portions
are extrapolated to(H/M)1/γ = 0 andM1/β = 0. TheM(T, 0) andχ−1

0 (T ) data, computed
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Figure 2. m2–h/m scaling plots based on SES II for a-Fe90−xCoxZr10 and a-Fe90+yZr10−y
alloys. The inequality, e.g.,−0.01. ε . 0.01 for a-Fe90Zr10, specifies the temperature range
aroundTC covered by the universal curves (see the text) for a given composition.
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from these intercepts, are plotted againstε = (T − TC)/TC in figures 4 and 5, respectively,
and analysed using the asymptotic methods described below.

Figure 3. A MAP for a-Fe89Co1Zr10 alloy in the critical region.

Figure 4. M(T, 0) plotted againstε = (T − TC)/TC in the critical region. Note thatM(T, 0)
data forx = 0, 1, 2, 4 and 6 are shifted up by the amount 155, 310, 465, 620 and 775 G,
respectively, with respect to those for a-Fe91Zr9. The dashed and continuous curves through the
data points represent the best least-squares fits based on equations (8) and (12) or (14) of the
text, respectively.
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Figure 5. χ−1
0 (T ) plotted againstε = (T − TC)/TC in the critical region. Note thatχ−1

0
data forx = 0, 1, 2, 4 and 6 are shifted up by the amount 1.27, 2.54, 3.81, 5.08 and 6.35,
respectively, with respect to those for a-Fe91Zr9. The dashed and continuous curves through the
data points represent the best least-squares fits based on equations (9) and (13) or (15) of the
text, respectively.

3.2. Asymptotic analysis

3.2.1. Single-power-law (SPL) analysis.The spontaneous magnetization and initial
susceptibility data in the critical region have been directly fitted to (1) and (2) with
asymptotic critical exponents and amplitudes in these replaced by their effective counterparts
βeff , γeff , meff0 and(m0/h0)

eff , i.e., to the single-power-law expressions

M(T, 0) = meff0 (−ε)βeff ε < 0 (8)

and

χ0(T ) = (m0/h0)
eff ε−γeff ε > 0. (9)

A detailed range-of-fit analysis ofM(T, 0) andχ0(T ) data based on the above expressions
indicates that the values of critical exponents and amplitudes depend on the temperature
range chosen for the analysis. The dashed curves in figures 4 and 5 represent the best
theoretical fits based on (8) and (9) over the temperature range|ε| 6 0.02 with the choice
of the parameters given in table 2.

3.2.2. The Kouvel–Fisher (KF) method.The Kouvel–Fisher (KF) method [25] is based
on the single power laws, (8) and (9), and determines critical exponents through analytical
means by rewriting (8) and (9) in the form

Y (T ) = M(T, 0)| dM(T, 0)/dT |−1 = (T − TC)/βeff (10)
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Table 2. Results of the Kouvel–Fisher (KF) and single-power-law (SPL) analyses of theM(T, 0)
andχ0(T ) recorded on the a-Fe90−xCoxZr10 and a-Fe90+yZr10−y alloys.

Alloy Fit range T −C m
eff

0 T +C (m0/h0)
eff

conc. Analysis (103|ε|) (K) βeff (G) (K) γeff (10−3)

y = 1 KF 0.7–10 209.7(1) 0.38(2) 870(30) 209.6(1) 1.40(2) 4.95(5)
KF 0.8–20 209.7(1) 0.39(2) 905(30) 209.6(1) 1.42(2) 4.65(5)
KF 1.0–40 209.8(1) 0.41(2) 950(30) 209.6(1) 1.43(2) 4.35(5)
SPL 0.9–10 209.8(1) 0.39(2) 850(40) 209.6(1) 1.40(2) 4.90(10)
SPL 1.0–20 209.8(1) 0.40(2) 935(40) 209.6(1) 1.42(2) 4.60(10)

y = 0; KF 0.6–10 225.0(1) 0.38(2) 870(35) 225.0(1) 1.41(2) 3.50(10)
x = 0 KF 0.7–20 225.0(1) 0.39(2) 905(35) 225.0(1) 1.44(2) 3.05(10)

KF 1.0–40 225.1(1) 0.41(2) 950(35) 224.9(1) 1.47(2) 2.80(10)
SPL 0.7–10 225.0(1) 0.37(2) 840(50) 224.9(1) 1.41(2) 3.50(15)
SPL 0.8–20 225.1(1) 0.40(2) 950(50) 224.9(1) 1.44(2) 3.10(15)

x = 1 KF 0.6–10 256.8(1) 0.38(2) 925(35) 256.6(1) 1.42(3) 2.45(10)
KF 0.6–20 256.8(1) 0.40(2) 995(35) 256.6(1) 1.44(3) 2.25(10)
KF 0.6–40 256.8(1) 0.41(2) 1060(35) 256.7(1) 1.47(3) 1.90(10)
SPL 0.5–10 256.7(2) 0.39(2) 940(50) 256.7(2) 1.41(2) 2.30(12)
SPL 0.7–20 256.8(2) 0.41(2) 1035(50) 256.7(2) 1.44(2) 2.20(12)

x = 2 KF 0.7–10 281.6(1) 0.38(2) 915(35) 281.6(1) 1.39(2) 2.05(8)
KF 0.8–20 281.6(1) 0.38(2) 935(35) 281.6(1) 1.43(2) 1.75(8)
KF 1.0–40 281.7(1) 0.39(2) 950(35) 281.5(1) 1.49(2) 1.35(8)
SPL 0.6–10 281.5(1) 0.37(2) 875(50) 281.6(1) 1.39(2) 1.95(10)
SPL 0.7–20 281.6(1) 0.38(2) 950(40) 281.6(1) 1.42(2) 1.80(10)

x = 4 KF 0.4–10 328.0(1) 0.39(2) 1130(35) 328.0(1) 1.41(2) 1.60(8)
KF 0.5–20 328.0(1) 0.40(2) 1195(35) 328.0(1) 1.43(2) 1.40(8)
KF 0.8–40 328.1(1) 0.42(2) 1260(35) 327.9(1) 1.48(2) 1.15(8)
SPL 0.4–10 328.0(1) 0.38(2) 1150(50) 328.0(1) 1.40(3) 1.55(15)
SPL 0.4–20 327.9(1) 0.40(2) 1170(50) 328.0(1) 1.43(3) 1.40(15)

x = 6 KF 0.4–10 374.8(1) 0.39(2) 1095(35) 374.8(1) 1.40(2) 1.36(6)
KF 0.4–20 374.8(1) 0.40(2) 1130(35) 374.8(1) 1.42(2) 1.20(6)
KF 0.6–40 374.9(1) 0.42(2) 1190(35) 374.8(1) 1.47(2) 0.98(6)
SPL 0.5–10 374.8(2) 0.38(2) 1090(50) 374.7(2) 1.40(3) 1.40(12)
SPL 0.5–20 374.8(2) 0.40(2) 1105(50) 374.7(2) 1.43(3) 1.25(12)

and

X(T ) = χ−1
0 (T )| dχ−1

0 (T )/dT |−1 = (T − TC)/γeff . (11)

According to this approach [25], in the asymptotic critical region where (8) and (9) (and
hence (10) and (11)) are valid,Y (T ) againstT (X(T ) againstT ) plot should be a straight
line with slope 1/βeff (1/γeff ) and intercept on theT -axis equal toT −C (T

+
C ). The Y (T )

and X(T ) data plotted againstε in figures 6 and 7 demonstrate the validity of the KF
approach for the alloys investigated. In these figures,Y (T ) andX(T ) have been displayed
as functions of reduced temperatureε, instead ofT , so as to accommodate such plots for
compositions with widely differentTC values in a single graph. The straight lines through
the data points represent the least-squares fits, based on (10) or (11), over theε range
indicated by the upward arrows. The values forβeff , γeff andTC in different temperature
ranges for the alloys in question obtained by the KF method are listed in table 2. The entries
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in this table clearly show that the results of the KF analysis are in very good agreement with
those of the single-power-law analysis and that theeffectiveexponents and/or amplitudes
dependon the temperature range used for the fit.

Figure 6. Y (T ) plotted againstε in the critical region. The zero on the ordinate scale forx = 0,
1, 2, 4 and 6 is shifted up by the amount 26.25, 52.5, 78.75, 105.0 and 131.25, respectively,
with respect to that of a-Fe91Zr9. The straight lines through the data points represent the best
least-squares fits based on equation (10) of the text over theε ranges indicated by the upward
arrows.

3.2.3. Analysis with ‘correction-to-scaling’ (CTS) terms.In view of the fact that all the
methods of analysis considered so far are based on single power laws and yet, with the
exception of the MAP method, they have been used to analyse data in temperature ranges
(aroundTC) that are not too narrow, the values of exponents and amplitudes so determined
are nothing but theeffectivevalues. In order to determine the trueasymptoticvalues of
the critical exponents and amplitudes, the expressions forM(T, 0) andχ0(T ) valid in the
asymptotic critical region should include the ‘correction-to-scaling’ (CTS) terms arising
from nonlinear irrelevant scaling fields, as predicted by the RG theories [13–16, 29, 30].
The expressions that are valid for amorphous ferromagnets and retain only the leading CTS
terms have the form [13–16, 20–23, 30]

M(T, 0) = m0(−ε)β [1+ a−M1
|ε|11 + a−M2

|ε|12] ε < 0 (12)

and

χ0(T ) = (m0/h0)ε
−γ [1+ a+χ1

|ε|11 + a+χ2
|ε|12] ε > 0 (13)

where11 and12 and(a−M1
, a−M2

) and(a+χ1
, a+χ2

) are the leading CTS critical exponents and
amplitudes, respectively, while the remaining quantities have the same meanings as stated
earlier. Note that in the case of crystalline ferromagnets the expressions forM(T, 0) and
χ0(T ) have the terms with factor|ε|12 as the first leading correction term because the CTS
termsa−M1

|ε|11 and a+χ1
|ε|11 are absent. By virtue of the fact that: [13–16, 18, 20–23, 29]
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Figure 7. X(T ) plotted againstε in the critical region. The zero on the ordinate scale forx = 0,
1, 2, 4 and 6 is shifted up by the amount 3.0, 6.0, 9.0, 12.0 and 15.0, respectively. The straight
lines through the data points represent the best least-squares fits based on equation (11) of the
text over theε ranges indicated by the upward arrows.

11 � 12, the CTS terms in (12) and (13) involving the exponent11 are significant only
for temperatures in the immediate vicinity ofTC whereas the CTS terms containing the
factor |ε|12 dominate for temperatures well within the asymptotic critical region but away
from TC . In order to accurately determine these correction terms, the following procedure
has been adopted. First, the amplitudesa−M2

and a+χ2
are set equal to zero and a detailed

‘range-of-fit’ analysis of theM(T, 0) (χ0(T )) data, based on the modified version of (12)
((13)) that includes the first correction term only, is carried out with the help of a nonlinear
least-squares fit computer program which treatsm0, T −C , β anda−M1

((m0/h0), γ , T +C and
a+χ1

) as free fitting parameters and keeps the CTS exponent11 fixed at the theoretically
predicted [16, 18, 31] value of11 = 0.11. In the ‘range-of-fit’ analysis, the lower bound
|εmin| of the temperature range|εmin| 6 |ε| 6 |εmax| is fixed at |εmin| ≈ 0 while the upper
bound|εmax| is increased so as to include more and more data points for temperatures away
from TC . Such an exercise reveals that over a certain temperature range close toTC , the
values of all the parameters including the coefficienta−M1

or a+χ1
are essentially unaffected

by the variation in|εmax|. Next, the coefficient of the first CTS terma−M1
(a+χ1

) is fixed at this
value and the ‘range-of-fit’ analysis ofM(T, 0)(χ0(T )) data is carried out by using (12)
((13)) with both the correction terms included and treatingm0, T −C , β and a−M2

((m0/h0),
T +C , γ and a+χ2

) as free fitting parameters while keeping11 and12 fixed at [16, 18, 20–
23, 31]11 = 0.11 and12 = 0.55. The quality of the least-squares (LS) fits obtained in
this way (henceforth referred to as the CTS analysis) is far superior to that of the single-
power-law fits in the same temperature range, as inferred from the substantially lower sum
of deviation squares,χ2

r , and from the deviation plots. Figure 8 shows the deviation plots
for a-Fe91Zr9 and a-Fe90Zr10 alloys in which the percentage deviation of theM(T, 0) or
χ−1

0 (T ) data from the corresponding theoretical values deduced from the best LS fit, i.e.,
100[M(exp) − M(fit)]/M(exp) or 100[χ−1

0 (exp) − χ−1
0 (fit)]/χ−1

0 (exp), is plotted against
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ε. This figure clearly demonstrates the superiority of the CTS fits over the KF (or SPL)
fits in the asymptotic critical region in that the former type of fit closely reproduces the
observed variation ofM(T, 0) andχ0(T ) with T over a wider temperature range (especially
so for temperatures in the immediate vicinity ofTC) whereas the latter type of fit presents
systematicdeviations. The deviation plots forχ−1

0 (T ) as well asM(T, 0) data for all the
remaining alloys are similar to those shown in figure 8. The CTS analysis, apart from
yielding accurate values for the asymptotic critical exponents and amplitudes, reveals that
the values of these exponents and amplitudes do not change (within the error limits) as the
temperature range for the CTS fit is varied in the ‘range-of-fit’ analysis. The maximum
value of|εmax| up to which the CTS fits yield stable values for all the parameters marks the
crossover temperatureε−co(ε < 0) andε+co(ε > 0) for M(T, 0) andχ0(T ), respectively, while
ε−co 6 ε 6 ε+co gives the extent of the asymptotic critical region (ACR). The theoretical fits,
based on (12) and (13), in the ACR with the values of parameters given in tables 3 and 4
(which also include critical amplitude values calculated for the isotherm closest toTC from
(7) and those of critical exponents obtained by the MAP analysis), are shown as continuous
curves in figures 4 and 5. In these figures, the crossover temperaturesε±co are indicated by
downward arrows. It is noticed from tables 3 and 4 that the values ofT −C andT +C are in good
agreement with one another within the uncertainty limits, the asymptotic critical exponents
arecomposition independentand the MAP analysis yields values for critical exponents and
amplitudes that are close to their asymptotic values.

Table 3. Results of the CTS and MAP analyses of theM(T, 0) data.

Alloy Fit range T −C m0

conc. Method (103|ε|) (K) β (G) a−M1
a−M2

y = 1 CTS 0.94–115 209.68(3) 0.366(4) 795(15)−0.03(1) 0.52(8)
MAP 0.360(15) 810(40)

x = y = 0 CTS 0.52–115 225.02(4) 0.360(5) 830(25)−0.05(1) 0.85(15)
MAP 0.355(15) 835(50)

x = 1 CTS 0.54–120 256.69(5) 0.368(6) 840(25)−0.04(1) 0.80(10)
MAP 0.365(15) 860(40)

x = 2 CTS 0.46–137 281.57(5) 0.363(5) 870(25)−0.04(1) 0.65(10)
MAP 0.360(15) 860(40)

x = 4 CTS 0.23–137 327.90(6) 0.365(6) 1000(20)−0.06(1) 0.90(10)
MAP 0.358(15) 950(60)

x = 6 CTS 0.01–151 374.75(5) 0.370(5) 950(25)−0.05(1) 0.70(8)
MAP 0.360(15) 910(60)

3.2.4. Analysis using nonlinear scaling variables.All the methods of analysis employed
until now have been based on the expressions that involve the linear variablesε andH .
Such expressions, e.g., (12) and (13), provide the best theoretical fits to theM(T, 0) and
χ0(T ) data in the ACR only. However, the quality of these fits deteriorates considerably for
temperatures outside the ACR. Such a behaviour has been previously observed [4, 5, 20–
23, 26, 27, 32–34] in many crystalline and amorphous ferromagnets. However, nearly a
decade ago, Souletie and Tholence [35] have found thatχ0(T ) data of crystalline Ni are
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Figure 8. The percentage deviation of theM(T, 0) andχ−1
0 (T ) data from the theoretical values

corresponding to the LS fits obtained from the KF and CTS data analyses forT < TC and
T > TC , respectively. Downward arrows mark the extent of the asymptotic critical region.

described by a power law of the formχ0(T ) = AχT
−1ε̃−γ + Bχ , in the nonlinear (NL)

variable ε̃ = (T − TC)/T (generally referred to as the modified Curie–Weiss law) over
an incredibly large temperature range ofTC to 3TC . A theoretical treatment [36] (the so-
called NL scaling theory) that, besides making use of the renormalization group ideas and
NL scaling variables̃ε = (t − 1)/t and h̃ = H/t (t = T/TC), takes into account both
NL irrelevant as well as relevant scaling fields has provided a firm theoretical basis for
this power law. Now that the recent investigations [22, 36, 37] of the critical behaviour of
certain ferromagnetic systems over a wide temperature range vindicate the nonlinear scaling
approach [36], a detailed analysis ofM(T, 0) andχ0(T ) data has been carried out based
on the expressions, predicted by this theory, that either include the leadingnonanalytic
corrections, arising from NL irrelevant scaling fields, i.e.,

M(T, 0) = m̃0|ε̃|β [1+ ã−M1
|ε̃|11 + ã−M2

|ε̃|12] ε̃ < 0 (14)

χ0(T ) = (m̃0/h̃0)t
−1|ε̃|−γ [1+ ã+χ1

|ε̃|11 + ã+χ2
|ε̃|12] ε̃ > 0 (15)
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Table 4. Results of the CTS and MAP analyses of theχ0(T ) data.

Alloy Fit range T +C m0/h0

conc. Method (103|ε|) (K) γ (10−3) a+χ1
a+χ2

y = 1 CTS 0.39–41 209.63(3) 1.383(4) 5.7(3)−0.03(1) −0.5(1)
MAP 1.386(20) 6.5(5)

x = y = 0 CTS 0.78–45 224.97(4) 1.390(5) 4.3(2)−0.05(1) −0.8(1)
MAP 1.386(20) 4.6(5)

x = 1 CTS 0.37–45 256.66(5) 1.385(5) 3.2(2)−0.05(2) −1.0(2)
MAP 1.380(15) 3.0(3)

x = 2 CTS 0.05–41 281.61(5) 1.389(6) 2.2(1)−0.05(2) −1.0(3)
MAP 1.386(20) 2.5(3)

x = 4 CTS 0.45–62 327.98(6) 1.383(7) 1.9(1)−0.05(2) −1.1(3)
MAP 1.390(20) 2.0(2)

x = 6 CTS 0.86–46 374.72(5) 1.386(6) 1.6(1)−0.05(2) −1.0(2)
MAP 1.386(15) 1.6(2)

or analytic corrections, originating from NLrelevant scaling fields, i.e.,

M(T, 0) = BM |ε̃|β [1+ ã−Mε̃] ε̃ < 0 (16)

χ0(T ) = Aχt−1|ε̃|−γ [1+ ã+χ ε̃] ε̃ > 0. (17)

Using the same extrapolation procedure as described in section 3.2.3,M(T, 0) andχ0(T )

have been extracted from the MAP isotherms, constructed in a temperature range as wide as
0.3TC . T . 1.5TC using the values of exponentsβ andγ obtained in the critical region.
One such MAP for a-Fe91Zr9, constructed from a few selectedM–H isotherms taken in the
range 68–300 K, is shown in figure 9. This figure captures all the essential features of the
MAPs for the remaining compositions. Detailed analysis of theM(T, 0) andχ0(T ) data
(figures 10 and 11) based on (14)–(17) reveals that in the asymptotic critical region (ACR),
(14) and (15) reproduce theM(T, 0) andχ0(T ) data to far greater accuracy than (16) and
(17). Note that in the theoretical fits based on (14) and (15), the CTS exponents are kept
fixed at their theoretical values11 = 0.11 and12 = 0.55 as was earlier the case with the
CTS analysis involving linear variablesε andH . In the ACR, the CTS analysis, based on
the expressions that include the non-analytic correction terms alone, yields thesameresults
regardless of whether these correction terms are expressed inlinear scaling variables, (12)
and (13), or innonlinear scaling variables, (14) and (15). On the other hand, (16) and (17),
which include a single leading analytic correction term, provide very good overall fits in
temperature ranges as wide as 0.45TC . T . TC for M(T, 0) and TC . T . 1.5TC for
χ0(T ) for all the alloys in question with the values of fit parameters and fit ranges given
in tables 5 and 6. These fits are represented by continuous curves in figures 10 and 11. In
view of the claim [35] that for crystalline Ni the empirical relation

χ0(T ) = Aχt−1|ε̃|−γ + Bχ ε̃ > 0 (18)

with the background correction termBχ describes very well the observed variation ofχ0 with
T from TC to 3TC , (18) has been used to analyse theχ0(T ) data over the entire temperature
range. This exercise shows that even though (18) withBχ 6= 0 provides a slightly better fit
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Figure 9. A MAP for a-Fe91Zr9 over a wide temperature range forT < TC and T > TC ;
β = 0.36 andγ = 1.386.

than whenBχ = 0 in (18), it does notreproduce the observed temperature variation ofχ0

as closely as (17) does. The deviation plot shown in figure 12 for a-Fe90+yZr10−y(y = 0, 1)
alloys testifies to the correctness of this inference in that the percentage deviation for the
fits based on (17) is considerably smaller than that for the fits based on (18) in the entire
temperature range (even for temperatures close toTC). However, neither of these expressions
(i.e., (17) and (18)) correctly describes the actual functional form ofχ0(T ) in the ACR, as
inferred from large systematic deviations of the theoretical values from the observed ones in
the ACR (figure 12). By comparison, the expression that includes the nonanalytic correction
terms either in linear variables (13) or in nonlinear variables (15) provides a much better
description ofχ0(T ) in the ACR (figure 8).

3.3. Critical isotherm

The critical exponentδ characterizing theM(T,H) versusH isotherm atT = TC (the
critical isotherm) is obtained by analysing theM–H isotherms in the immediate vicinity
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Figure 10. M(T, 0) plotted againstT/TC over a wide temperature range forT < TC . Note
that the zero on the ordinate scale forx = 0, 1, 2, 4 and 6 is shifted by 250, 500, 750, 1000 and
1250, respectively, and the solid curves represent the least-squares fits based on equation (16).

Table 5. Parameter values for the LS fits, based on equation (16) of the text, to theM(T, 0)
data taken over a wide temperature range.

Alloy Fit range T −C BM
conc. (T /TC) (K) β (G) ã−M

y = 1 0.45–1.0 209.68(8) 0.380(10) 885(30)−0.15(3)
x = y = 0 0.45–1.0 225.10(10) 0.390(15) 970(30)−0.20(3)
x = 1 0.50–1.0 256.72(8) 0.395(10) 1000(30)−0.22(3)
x = 2 0.45–1.0 281.59(10) 0.380(10) 1030(30)−0.14(3)
x = 4 0.50–1.0 327.95(10) 0.395(15) 1230(30)−0.20(4)
x = 6 0.45–1.0 374.70(10) 0.385(10) 1100(30)−0.13(3)

of TC in terms of (3). It is evident from (3) that the plot of lnM against lnH at T = TC
should be a straight line with slopeδ−1 and intercept on the ordinate equal to lnA0. Such
lnM–lnH plots, constructed using theM–H isotherms in the immediate vicinity ofTC for
the alloys investigated (figure 13), clearly demonstrate that the isotherm atTC is indeed a
straight line and the isotherms on either side ofTC exhibit a concave-upward and concave-
downward curvature forT < TC andT > TC , respectively. The curvature becomes more
pronounced as the temperature increasingly deviates fromTC . These features, characteristic
of many amorphous as well as crystalline ferromagnets [5, 22, 23, 27, 33, 34, 37], are clearly
borne out by the data presented in figure 13. The solid line in figure 13 for each composition
represents the theoretical fit based on (3) to the critical isotherm atTC . The exponentδ
and amplitudeA0 or D are computed from the slope and intercept on the ordinate of this
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Figure 11. χ−1
0 plotted againstT/TC over a wide temperature range forT > TC . The dashed

and continuous curves through the data points denote the least-squares fits based on equations
(15) and (17), respectively.
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Table 6. Parameter values for the LS fits, based on equation (17) of the text, toχ−1
0 (T ) data

taken over a wide temperature range.

Alloy Fit range T +C Aχ qc qs
conc. (T /TC) (K) γ (10−3) ã+χ (µB ) (µB ) qc/qs

y = 1 1.0–1.43 209.60(8) 1.39(2) 4.5(3)−2.0(4) 6.67(24) 1.34(2) 4.98(25)
x = y = 0 1.0–1.33 224.96(8) 1.39(2) 3.7(2)−1.8(3) 6.25(22) 1.44(2) 4.34(20)
x = 1 1.0–1.17 256.67(10) 1.40(2) 2.9(2)−2.5(4) 5.85(25) 1.52(2) 3.85(20)
x = 2 1.0–1.07 281.61(10) 1.39(2) 2.1(2)−3.6(4) 5.13(30) 1.62(2) 3.17(20)
x = 4 1.0–1.35 327.98(10) 1.41(3) 1.5(2)−1.5(4) 4.61(30) 1.79(2) 2.58(20)
x = 6 1.0–1.20 374.70(10) 1.42(3) 1.0(2)−1.0(3) 3.92(30) 1.81(2) 2.17(20)

Figure 12. Percentage deviation of theχ−1
0 (T ) data from the theoretical values corresponding

to the least-squares fits based on equations (17) (•) and (18)(+).

straight line. The values ofTC , δ andD thus obtained are listed in table 7 along with values
of δ calculated from the scaling relationδ = 1+ (γ /β) using the MAP values ofβ andγ
as well as those ofD calculated for the isotherm closest toTC from (7). The values ofTC
for all the alloy compositions determined by this method are in excellent agreement with
those extracted using methods described earlier.

4. Discussion

4.1. Asymptotic and effective critical exponents and amplitudes

The present results demonstrate that the CTS analysis, which includes the nonanalytic
correction terms, arising from nonlinear irrelevant scaling fields, yields accurate values
for the asymptoticcritical exponents and amplitudes that, in the ACR, areindependentof
the temperature range chosen for a CTS fit in the ‘range-of-fit’ analysis. On the other hand,
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Figure 13. lnM–lnH isotherms at a few selected temperatures aroundTC for a-Fe90−xCoxZr10

and a-Fe90+yZr10−y alloys.
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Table 7. Parameter values for the critical isotherm. Values ofδ andD within the square brackets
are obtained by the MAP analysis (see text).

Alloy TC D

conc. (K) δ (10−9 Oe1−δ)

y = 1 209.6(1) 4.75(5) 3.04(10)
[4.85(20)] [3.60(20)]

x = y = 0 225.0(1) 4.83(4) 2.00(6)
[4.90(20)] [0.81(30)]

x = 1 256.7(1) 4.80(4) 3.20(10)
[4.78(20)] [3.07(25)]

x = 2 281.6(1) 4.81(5) 3.76(10)
[4.85(20)] [3.43(25)]

x = 4 328.0(1) 4.85(5) 1.98(7)
[4.88(20)] [1.45(25)]

x = 6 374.8(1) 4.84(5) 3.08(12)
[4.85(20)] [2.11(30)]

the effectivecritical exponents and amplitudes obtained by using other methods of analysis
(including KF and SPL)dependon the temperature range used and denote theaverage
values over this temperature range. This observation is clearly brought out by the results
presented in table 2. It is also noticed from this table that the results of KF and SPL analyses
conform well with one another. Such an agreement is expected since both the methods are
based on the same pure-power-law expressions (8) and (9) forM(T, 0) and χ0(T ). The
effective exponentsβeff andγeff as functions of temperature can be obtained from the KF
relations (10) and (11) when they are put into the form [25, 26]

βeff (T ) = T − TC
|Y (T )| =

TC ε

|Y (T )| γeff (T ) = (T − TC)
X(T )

= TC ε

X(T )
. (19)

The values ofβeff andγeff at different temperatures, thus obtained, are plotted as a function
of ε in figures 14 and 15, respectively, within the ACR. The asymptotic and effective
critical exponents for temperatures in close proximity toTC (i.e., in the ACR) are related
in accordance with the expressions [20, 22, 23, 29, 37]

βeff (ε) = β + a−M1
11|ε|11 + a−M2

12|ε|12 (20)

and

γeff (ε) = γ − a+χ1
11|ε|11 − a+χ2

12|ε|12. (21)

It is evident from these equations that over a finite temperature range aroundTC , where
the correction terms are significant, the effective exponents can appreciably differ from
the asymptotic ones and thatβeff (ε) andγeff (ε) coincide withβ andγ only in the limit
|ε| → 0. This observation is clearly brought out by the data presented in figures 14 and 15
for the alloys in question. The continuous curves through the data points in these figures
represent the theoretical fits to theβeff [γeff ] data based on (20) [(21)] obtained by keeping
the CTS exponents(TC) fixed at their theoretical values11 = 0.11 and12 = 0.55 (at the
KF value obtained in the range|ε| . 0.01) and treatingβ, a−M1

anda−M2
[γ , a+χ1

anda+χ2
] as

free fitting parameters. The values of these parameters determined in this way serve as a
cross-check for those deduced from the CTS analysis ofM(T, 0) andχ0(T ) data (tables 3
and 4) in the ACR because the above analysis involvesthree fitting parameters as against
five in the CTS analysis. Therefore, it is gratifying to note that the two analyses yield the
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same parameter values. Moreover, the necessity of including the (nonanalytic) confluent
singularity corrections in the analysis is evident from the functional dependences ofβeff
andγeff on ε depicted in figures 14 and 15 when it is recognized that the exponentsβeff
andγeff should beindependentof temperature if such correction terms are not important.
Another interesting feature presented by the data shown in these figures is that bothβeff and
γeff increasewith increasing|ε| for the alloys investigated as contrasted with a monotonic
decreasing trend with increasing|ε| exhibited by these effective exponents in the ACR in
many amorphous 3d transition metal–metalloid ferromagnetic alloys as well as crystalline
elemental ferromagnets [20, 22, 23, 25, 37]. Consistent with this variation ofβeff (ε) and
γeff (ε), the sign of the CTS amplitudes (positive for a−M2

and negativefor a−M1
, a+χ1

and
a+χ2

, tables 3 and 4) in the present case is exactly opposite to that previously found in the
ferromagnetic systems mentioned above. However, the overall behaviour ofγeff (ε) in a
larger temperature range, i.e., fromTC to Tmax (the maximum temperature covered in the
present experiments), shown in figure 16, for the present alloys is similar to that observed
earlier in a number of disordered systems [22, 23, 26, 27, 32, 33]. The continuous curves in
figure 16 represent the CTS fits to theγeff (ε) data based on (21) in the ACR, as described
above. It is evident from these figures that for temperatures outside the ACR, i.e., for
ε > ε+co, γeff increases rapidly and goes through a peak (peak valueγ

p

eff ) at εp and, as the
Co concentration is increased,ε+co(εp) exhibits an increasing (decreasing) trend (i.e., shifts
to higher (lower) temperatures) whileγ peff slowly diminishes in value.

Table 8 tests the validity of the Widom scaling relation,βδ = β+γ , for the investigated
alloys besides comparing the experimentally determined values of asymptotic exponentsβ,
γ and δ with the corresponding theoretical estimates yielded by three-dimensional (3D)
Heisenberg, Ising andXY models for ordered or quenched random-exchange spin systems
[13–16, 18, 26]. The values for the amplitude ratiosDmδ0/h0, m0/M(0, 0) andµ0h0/kBTC
(µ0 is the magnetic moment per alloy atom at 0 K) calculated using the determined values of
asymptotic critical amplitudes are listed in table 9 along with the corresponding theoretical
estimates [23, 26, 38, 39]. The main observations, based on the data presented in tables 8
and 9, are (i) the values for the asymptotic critical exponents and the universal amplitude
ratios Dmδ0/h0 and a−M2

/a+χ2
are composition independent(within the error limits) and

conform very well with the theoretical estimates [40] for the pure (ordered) spin system
with d = n = 3, (ii) the ratio a−M1

/a+χ1
, which involves the leading CTS amplitudes that

arise only in the presence of quenched disorder, like the ratioa−M/a
+
χ (= a−M2

/a+χ2
) involving

the CTS amplitudes which are also present in the case of ordered systems, turns out to be
composition independent(and hence could be universal as well), (iii) the Widom scaling
relation is satisfied to a far greater accuracy by the asymptotic critical exponents than by
the effective ones, (iv) the agreement between theory and experiment is much better for
the asymptotic exponents than for the effective counterparts and (v) while the discrepancy
between experimental and theoretical values of the ratiom0/M(0, 0) is small, the ratio
µ0h0/kBTC is at least one order of magnitude lower than the theoretical estimate of 1.58
for a 3D Heisenberg ferromagnet.

The finding that the values of asymptotic critical exponents for the a-Fe90−xCoxZr10

and a-Fe90+yZr10−y alloys are the same as those of an isotropic 3D Heisenberg ferromagnet
refutes the earlier claims [2, 3], based on the single-power-law analysis, that for the same
alloys critical exponentsβ andγ have anomalously large values. The results of the present
investigation make it clear that such unphysically large exponent values as well as the
spread in the reported exponent values are an artifact [41] of the analysis carried out on the
bulk magnetization data taken outside the critical region since, even in the ACR,βeff (ε)

and γeff (ε) depend on temperature (figures 14 and 15) and possess much larger values
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Figure 14. βeff plotted againstε in the ACR. The continuous curves denote the least-squares
fits based on equation (20). The typical uncertainty limits for theβeff (ε) data are±0.01.
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Figure 15. γeff plotted againstε in the ACR. The continuous curves represent the least-squares
fits based on equation (21). The typical uncertainty limits for theγeff (ε) data are±0.01.
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Figure 16. The variation ofγeff with ε over a wide temperature range forT > TC . The
solid curves through the data points denote the least-squares fits, obtained in the ACR, based
on equation (21). The typical uncertainty limits for theγeff (ε) data are±0.01.
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Table 8. A comparison between theory and experiment: asymptotic and effective critical
exponents, and validity of the Widom scaling equality. CTS, correction to scaling; HM,
Heisenberg model; IMp , pure (ordered) Ising model; IMr , quenched random Ising model; KF,
Kouvel–Fisher; MFT, mean-field theory.

Alloy
conc. Analysis β γ δ β + γ βδ

y = 1 CTS 0.366(4) 1.383(4) 4.75(5) 1.749(8) 1.739(38)
KF 0.382(15) 1.400(20) 1.782(35) 1.807(90)

x = y = 0 CTS 0.360(5) 1.390(5) 4.83(4) 1.750(10) 1.739(39)
KF 0.382(15) 1.405(20) 1.787(35) 1.845(88)

x = 1 CTS 0.368(6) 1.385(5) 4.80(4) 1.753(11) 1.766(43)
KF 0.384(15) 1.416(25) 1.800(40) 1.836(87)

x = 2 CTS 0.363(5) 1.389(6) 4.81(5) 1.752(11) 1.746(42)
KF 0.381(15) 1.388(20) 1.769(35) 1.825(90)

x = 4 CTS 0.365(6) 1.383(7) 4.85(5) 1.748(13) 1.770(48)
KF 0.386(15) 1.407(20) 1.793(35) 1.872(92)

x = 6 CTS 0.370(5) 1.386(6) 4.84(5) 1.756(11) 1.791(43)
KF 0.390(15) 1.402(20) 1.792(35) 1.888(93)

3D HMa 0.365(3) 1.386(4) 4.80(4) 1.751(7) 1.752(30)
3D IMa

p 0.325(2) 1.241(2) 4.82(3) 1.566(4) 1.567(20)
3D IMa

r 0.349(2) 1.336(2) 4.83(3) 1.685(4) 1.686(20)
3D XYa 0.345(2) 1.316(3) 4.81(3) 1.661(5) 1.660(20)
MFT 0.500 1.000 3.00 1.500 1.500

a [16, 18, 23, 26].

Table 9. A comparison between theory and experiment: amplitude ratios. Abbreviations have
the same meaning as in table 8.

Conc. h0 M(0, 0) µeff c

(y/x) (105 Oe) Dmδ0/h0 a−M1
/a+χ1

a−M2
/a+χ2

(G) m0/M(0, 0) µ0h0/kBTC (µB ) (%)

y = 1 1.4(1) 1.30(60) 1.0(7) −1.0(4) 965(25) 0.82(4) 0.060(5) 35.2(25) 4(1)
x = y = 0 1.9(2) 1.32(65) 1.0(5) −1.1(4) 1041(30) 0.79(5) 0.082(7) 27.7(22) 5(1)
x = 1 2.6(2) 1.34(65) 0.8(4) −0.8(3) 1100(35) 0.76(4) 0.104(11) 23.0(21) 7(1)
x = 2 4.0(3) 1.30(65) 0.8(4) −0.7(2) 1170(25) 0.75(4) 0.154(14) 16.7(13) 10(1)
x = 4 5.3(4) 1.33(85) 1.2(5) −0.8(3) 1296(20) 0.77(4) 0.194(26) 14.7(18) 12(1)
x = 6 6.0(5) 1.33(95) 1.0(5) −0.7(3) 1305(30) 0.83(4) 0.195(31) 14.8(23) 12(1)
3D HMa 1.33(1) 1.37(7) 1.58
3D IMa

p 1.81 0.90(21)b 1.49 1.52
MFTa 1.00 1.73 1.73

a [23, 26, 38, 39].
b [38, 39].

for ε > ε+co (see, e.g., figure 16). The observation that the values of asymptotic critical
exponents and universal amplitude ratios for the investigated amorphous alloys exactly
coincide with the 3D Heisenberg values (observation (i)) vindicates the Harris criterion [19]
and testifies to the correctness of the RG predictions [13–16] that the critical behaviour of
a quenched random-exchanged = 3 Heisenberg ferromagnet is the same as that of the pure
(ordered)d = n = 3 spin system. Moreover, this observation permits us to conclude that
the systems studied in this work belong to thed = n = 3 universality class. That these
glassy systems are not the experimental realizations of the quenched random-anisotropy
model (RAM) is asserted by the fact that none of the theoretical predictions [42] based on
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RAM, i.e., the Harris criterion does not apply and, depending on particular assumptions,
the system exhibits (a) a first-order phase transition, (b) crossover to a new fixed point or
(c) two transitions, the first to a state of zero magnetization and infinite susceptibility, the
second to a state of finite susceptibility, is borne out by the present experimental results.
Validity of the Widom scaling relation for the alloys in question (observation (iii)) demands
that theM(T,H) data taken in the critical region must satisfy the scaling equation of
state for a second-order phase transition, i.e., SES I (4) or even SES II (5). That this is
indeed the case for a-Fe90−xCoxZr10 and a-Fe90+yZr10−y alloys is evident from figures 1
and 2. The physical implication of the significantly lower values of the ratioµ0h0/kBTC
than that expected for a 3D nearest-neighbour (NN) Heisenberg ferromagnet is as follows.
Sinceh0 is presumably aneffectiveexchange interaction field, the product ofh0 and an
average effectiveelementary moment(µeff ) involved in the FM–PM phase transition, i.e.,
the effective exchange energyµeff h0, is expected to equal the thermal energykBTC at TC .
Evidently, this is not the case for the alloys in question unlessµeff takes on values that
are much larger thanµ0. Now that the critical exponents possess the 3D Heisenberg values
for the presently investigated alloys, the ratioµeff h0/kBTC is also expected to equal the
3D Heisenberg estimate of 1.58. This is possible only whenµeff assumes values given in
table 9. Moreover, if the concentration of such effective moments isc, c = µ0/µeff . The
values ofc calculated in this way, included in table 9, indicate that only a small fraction
of moments actually participates in the FM–PM phase transition and this fraction increases
with increasing Co concentration(x).

These results find a straightforward but qualitative explanation [4, 22, 23, 26, 32] in terms
of the infinite ferromagnetic (FM) matrix plus finite FM spin clusters model (the details of
this model are given in our earlier reports [4, 26, 43]), as is evident from the remarks made
below. Within the framework of this model, even at low temperatures(T � TC), the
ferromagnetic coupling between the spins that constitute the finite clusters is muchstronger
than that between the spins of the FM matrix. As the temperature is increased towards
TC , the exchange interaction between the spins in the FM matrix weakens whereas the FM
coupling between the spins within the finite clusters is still relatively strong so that the
spins of finite clusters increasingly polarize the FM matrix spins and hence these clusters
grow in size at the expense of the FM matrix. Consequently, the number of spins in the
FM matrix decreases rapidly asT → TC , so much so that only a small fraction of spins
participates in the FM–PM phase transition atTC . In Co containing alloys, the Fe–Co and
Co–Co exchange interactions are ferromagnetic and much stronger than the Fe–Fe exchange
coupling, with the result that a progressive replacement of Fe by Co in a-Fe90−xCoxZr10

alloys gradually suppresses the competing interactions in the frustration zones. This, in
turn, leads to breaking up of finite spin clusters into smaller ones and merging of some
of them with the infinite FM matrix. Hence the effect of increasing Co concentration in
the a-Fe90−xCoxZr10 alloy series is to (i) decrease the size as well as number of finite
spin clusters, (ii) increase the number of spins in the infinite FM matrix and (iii) make
the ferromagnetic coupling between the spins in the FM matrix stronger (hence increase
TC). This implies that the higher the Co concentration, the larger is the number of spins
available in the FM matrix to start with at low temperatures and the greater is the number
of spins left behind atTC by the temperature-induced growth of finite spin clusters. In other
words, consistent with the present observation, the fraction of spins,c, participating in the
FM–PM transition atTC increases with increasing Co concentration. Moreover, since the
spin–spin correlation length,ξ(T ), diverges [44] atTC , the presence of finite clusters is not
felt at all for temperatures close toTC and as such amorphous and crystalline ferromagnets
exhibit the same critical behaviour in the ACR. As the temperature is increased beyond
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TC , ξ(T ) decreases and a temperatureε+co is reached at whichξ(T ) is equal to the caliper
dimension of the largest spin cluster. The magnetic inhomogeneity in the spin system is
now no longer averaged out andγeff begins to increase and attains a peak valueγ

p

eff at εp
when ξ(T ) is comparable to the linear dimension of the smallest cluster. Forε > εp, the
clusters shrink in size at a much faster rate than that at whichξ(T ) decreases with increasing
temperature and henceγeff decreases towards the mean-field value. Furthermore, as the Co
concentration is increased, the size of clusters as well as their number decreases and hence
ξ(T ) becomes comparable to the size of the largest (smallest) cluster at a larger value of the
temperatureε+co(εp) whereasγ peff decreases because of the lower average size and narrower
size distribution of the spin clusters for higher Co concentrations.

A recent claim [45] that the magnetic ordering behaviour of a-Fe90+yTM10−y
(TM = Zr,Hf,Sc) alloys for temperatures in the range 0. T . T ∗ (T ∗ > TC or Txy ,
the transverse spin freezing temperature) can be completely understood in terms of the
homogeneoustransverse spin freezing (TSF) model prompted us to explore the possibility
of explaining the above observations in the light of this model. Considering that this model
is based on a bond-frustrated 3D Heisenberg model [46], critical exponents and universal
amplitude ratios are expected to possess 3D NN Heisenberg values. Moreover, in the TSF
model, a progressive substitution of Fe by Co in a-Fe90−xCoxZr10 alloys amounts to a
random replacement of antiferromagnetic Fe–Fe exchange bonds by ferromagnetic Co–Fe
and Co–Co exchange bonds and hence to an enhancement in the value ofTC . Both the
above inferences conform well with our results. Now that the TSF model asserts thatTC
marks the temperature at which a transition occurs from the paramagnetic state to a state
with homogeneouslong-range ferromagnetic ordering, the presently studied spin systems
should behave exactly the same way as crystalline (ordered) ferromagnets do so far as
the behaviour in the critical region and at temperatures well aboveTC is concerned. The
observations such as (i) only a small fraction of moments participating in the FM–PM
transition and this fraction increasing with Co concentration, (ii) a peak inγeff (ε) at εp
and (iii) the dependence ofεp, γ peff and ε+co on Co concentration,specific to amorphous
ferromagnets only, are in directcontradictionwith the above predictions of the TSF model.

4.2. Nonlinear scaling behaviour

Elaborate analysis of theM(T, 0) and χ0(T ) data in terms of the expressions predicted
by the nonlinear scaling theory [36] reveals that (i) thenonanalyticCTS terms essentially
control the temperature dependence ofM(T, 0) andχ0(T ) for temperatures close toTC , (ii)
in the ACR, nonlinear scaling theory yields exactly the same results as its linear counterpart
does and (iii) theanalytic corrections become important for temperatures outside the ACR.
Since the expression that includes a single leading analytic correction term in nonlinear
variable ε̃, i.e., (17), adequately describes theχ0(T ) data over a wide temperature range
aboveTC for the investigated alloys and thereby permits an unambiguous determination of
the magnetic moment per alloy atom in the paramagnetic state,qc, (17) may be termed
as the generalized Curie–Weiss law [36]. The Curie constantC = AχTC is related to the
effective paramagnetic moment(peff ) as peff = 2.828

√
CA/ρ, whereA and ρ are the

atomic weight and density, respectively.peff , in turn, is related toqc asp2
eff = qc(qc+2).

The values ofqc, computed from these relations using theAχ and TC values listed in
table 6, and those of the ratioqc/qs , whereqs(≡ µ0) is the magnetic moment per alloy
atom at 0 K, are included in table 6. For all the amorphous alloys in question, the ratio
qc/qs � 1 and its values for different compositions when plotted againstT −1

C or T −2/3
C

fall on a straight line as shown in figure 17. According to the criteria proposed by Rhodes
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and Wohlfarth [47] and Moriya [47] for weak itinerant ferromagnetism, the observations
qc/qs � 1 andqc/qs ∝ T −1

C or qc/qs ∝ T −2/3
C imply that the amorphous alloys investigated

are weak itinerant ferromagnets. Note that our results are unable to make a clear-cut
distinction between the two criteria because the range ofTC values covered in the present
experiments is not wide enough. The observation that these weak itinerant ferromagnets
behave like 3D NN Heisenberg ferromagnets in the critical region, when considered in
conjunction with the result of the renormalization group calculations [48] that for ad-
dimensional spin system with anisotropic n-component order parameter andlong-range
attractive interactions decaying as 1/rd+σ (σ > 0), critical exponents assume theirshort-
rangevalues for alld if σ > 2, asserts that the magnetic moments in the systems investigated
interact with one another through along-range interaction whichdecays fasterthan 1/r5

with the intermoment spacing,r. The above considerations strongly indicate that it is the
itinerant-electron model andnot the localized-electron (Heisenberg) model, on which the
TSF model [45] is based, that forms thecorrect description of magnetism in the glassy
materials of interest in this work.

Figure 17. qc/qs againstT −1
C and qc/qs againstT −2/3

C plots. The solid line denotes the
least-squares straight-line fit to the data.

A cursory glance at the MAPs depicted in figures 3 and 9 suffices to reveal that the slope
of the MAP isotherms decreases continuously with increasing temperature. This feature of
MAP is characteristic [4, 5, 22, 23, 26, 27, 32, 33, 36, 37] of both crystalline and amorphous
ferromagnets. The Arrott–Noakes equation of state in linear variablesε andH (i.e., (6))
cannot account for this variation in the slope of MAP isotherms since the coefficientsa′

and b′ in (6) are temperature independent. By contrast, the magnetic equation of state in
nonlinear variables̃ε and h̃ of the form

M1/β = a(−ε̃)+ bt−1/γ (H/M)1/γ (22)

with

a ' ÃM [1+ ã−M1
|ε̃|11 + ã−M2

|ε̃|12] (23)

and

b ' Ã[1+ ã1|ε̃|11 + ã2|ε̃|12] (24)
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or

a = [B ′M(1+ ãM ε̃)]1/β ' AM [1+ aMε̃] (25)

and

b = [BM(1+ ãM ε̃)]1/β [Aχ(1+ ãχ ε̃)]1/γ ' A[1+ ãε̃] (26)

yielded by the NL scaling theory [36], predicts the temperature dependence of the MAP
intercept(= a(−ε̃)) and slope(= bt−1/γ ) of the type given by (23) or (25) and (24) or
(26), respectively. Note that (23) and (24) ((25) and (26)) contain nonanalytic (analytic)
correction terms alone but the NL theory predicts the expressions that combine both types of
correction. However, to facilitate comparison with experiment, it is convenient to separate
correction terms that become important in different temperature ranges. Encouraged by
the accurate predictions that the nonlinear scaling theory makes about the temperature
dependence ofM(T, 0) and χ0(T ) over a wide temperature range, which embraces the
critical region, a detailed analysis of the observed temperature variation of the MAP intercept
and slope in terms of (22)–(26) was undertaken. The main outcome of this exercise is
that the observed temperature variation of slope and intercept (on the MAP ordinate) is
closely reproduced (figure 18) by the relations, slope(T ) = bt−1/γ and intercept(T )
[≡ M1/β(T , 0)] = a(−ε̃), respectively, for temperatures in the immediate vicinity ofTC
(over a much wider temperature range) with the expressions for the coefficientsa and
b given by (23) and (24) [dashed curves] ((25) and (26) [continuous curves]). Such an
agreement between the theory and experiment is representative of all the compositions
studied. This implies that the nonanalytic correction terms dominate over the analytic ones
for temperatures close toTC whereas the reverse is true for temperatures away fromTC .
This result is consistent with the similar observation made above in the case ofM(T, 0)
andχ0(T ). Furthermore, when the intercept data forT 6 TC only are used in the analysis,
the terma(−ε̃) with the coefficienta given by either (23) or (25) provides the best fit with
the choice of parameters and temperature range that is exactly the same as that for the fit
to M(T, 0) data based on (14) or (16). This result is not surprising when it is realized that
the intercepts forT 6 TC are nothing butM(T, 0) expressed as [M(T, 0)]1/β .

Note that in the limit|ε̃| → 0 (or equivalentlyt → 1), (22) reduces to the Arrott–Noakes
(AN) scaling equation of state (SES) (6), as the coefficientsa andb assume their limiting
temperature-independentvaluesÃM and Ã, respectively. Thus, the AN SES represents a
special case of the more general SES given by (22) and is strictly valid only for temperatures
extremely close toTC , i.e., in the limit |ε| or |ε̃| → 0, since it is based on the asymptotic
power laws described by (1) and (2). At this stage, it should be emphasized that the
customary practice of choosing the exponentsβ and γ such that MAP isotherms over a
broad temperature range aroundTC are straight andparallel to one another in accordance
with the AN SES (6) is bound to yield incorrect functional dependences of spontaneous
magnetization,MS , and initial susceptibility,χ0, on temperature, especially in the critical
region. This is so because, in such a case,temperature-dependent effectivecritical exponents
βeff andγeff , defined by (8) and (9), replaceasymptoticcritical exponentsβ andγ in (6)
andβeff (ε) and γeff (ε) (figures 14 and 15), in turn, decide the variations ofMS andχ0

with temperature. Alternatively, temperature dependences ofMS or χ0 obtained from such
MAPs, even in a temperature region that is common to MAPs constructed fromM(T,H)

data taken in different temperature ranges aroundTC , vary from MAP to MAP because they
are basically controlled by effective exponents whose values depend on the temperature
range chosen for the MAP. This problem is effectively tackled by using the asymptotic
values of the critical exponentsβ andγ (obtained by the SES III method) in constructing
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Figure 18. Variation of slope≡ S(T ) = bt−1/γ and intercept (on the ordinate)≡ I (T ) = a(−ε̃)
of the linear MAP isotherms over a wide temperature range aroundTC . Dashed and continuous
curves represent the least-squares fits to the data with the coefficientsa andb given by equations
(23), (24) and (25), (26), respectively.

the MAPs over a wide range of temperatures because, in this case, the generalized magnetic
equation of state (22) (which includes the corrections to asymptotic power laws arising
from nonlinear irrelevant and relevant scaling fields and hence adequately describes the
magnetization behaviour over wide ranges of field, particularly in the high-field region, and
temperature, as evident from the data presented in figures 9 and 18) andnot the AN SES
(6) forms the basis for MAPs.

5. Conclusions

The main conclusions regarding the thermal critical behaviour of a-Fe90−xCoxZr10 and
a-Fe90+yZr10−y alloys that can be drawn from the results of the bulk magnetization
measurements on these systems over a wide temperature range, which embraces the critical
region, are as follows.

(i) The asymptotic critical exponents and the universal amplitude ratiosDmδ0/h0 and
a−M2

/a+χ2
, are in very good agreement with the corresponding theoretical estimates for the

pure (ordered) spin system withd = n = 3. Such an agreement vindicates the famous
Harris criterion.

(ii) Consistent with the result that Widom scaling equality is satisfied to a very high
degree of accuracy, the magnetization data obey the scaling equation of state valid for the
second-order phase transition.

(iii) The fraction of spins that actually participates in the FM–PM phase transition in
the amorphous alloys in question is small and increases with increasing Co concentration.

(iv) Nonanalytic correction terms, arising from nonlinear irrelevant scaling fields,
dominate over the analytic ones, originating from nonlinear relevant scaling fields, in the
asymptotic critical region, but the reverse is true for temperatures outside the ACR.

(v) The magnetic equation of state in linear scaling variables, valid for a second-order
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phase transition, describes the magnetization data for temperatures close toTC , whereas
its counterpart in nonlinear scaling variables properly accounts for the observedM(T,H)

behaviour in a much wider temperature range aroundTC .
(vi) χ0(T ) follows the generalized Curie–Weiss law (17) fromTC to ∼ 1.5TC and

thereby makes an unambiguous determination of the atomic moment in the paramagnetic
state possible.

(vii) All the investigated amorphous alloys areweak itinerant ferromagnets.
(viii) The infinite 3D FM matrix plus finite FM spin cluster model provides a simple

but qualitative explanation for all the diverse aspects of the present results including the
temperature variations ofγ KFeff .
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